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Abstract--A separated two-component flow model is presented which includes virtual m a .  forces 
coupling the momentum equations of the two components. It is shown that for physically realistic 
situations four real roots of the characteristic determinant can exist. These are associated with the 
acoustic propagation velocities and the flow velocities of the constitutive phases. Direct analytical 
solution of the full characteristic determinant is difficult. However, for low Mach number flows an 
acoustic propagation velocity is obtained which falls between the well-known true separated and 
homogeneous wave speeds, and compares favorably with experimental data for glass/water and 
air/water mixtures. 

I N T R O D U C T I O N  

One of the problems that has to be overcome when attempting to analyze the flow of 
two-component mixtures in pipes is the desire to properly describe the flow processes and at 
the same time have a set of equations that can be manipulated to give the necessary answers 
for design purposes. Recent studies have been directed mainly towards mixtures of water, air 
and water vapour with the principal applications being fault conditions in condenser cooling 
water systems and nuclear installations. The assumed physical models have ranged over a 
considerable spectrum. At one end arc the homogeneous pseudo-fluid models having 
properties averaged over a cross section and a constant speed of pressure wave propagation, 
with the gas or vapour phase lumped in some cases at discrete intervals. Towards the other 
end have been those models which attempt to incorporate mass transfer, diffusion processes 
and variable wave speeds. 

The mathematical description of these situations is a set of partial differential equations, 
the complexity of which is, naturally, linked to the complexity of the assumed physical 
model. The solution of these equations has, in general, been attempted by utilizing the 
method of characteristics although other schemes have been investigated to test their 
usefulness. Nevertheless, the method of characteristics has become one of the more widely 
used techniques among analysts of one-dimensional unsteady flows, partly because of its 
relative simplicity and the ease with which boundary conditions can be incorporated. 

For flows which may be regarded as homogeneous and in thermal equilibrium, in which 
both components or phases are uniformly distributed, have the same velocities, rates of 
change of velocity and similar physical properties, the so-called three-equation system, 
namely a mixture momentum equation and separate equations for the conservation of mass 
of each phase, are usually found to be adequate (Wallis 1969). However, for other situations, 
especially where relative motion between the phases occurs, it is necessary that separate 
momentum equations be used for each of the components of the flow. Unfortunately, in 
developing the cross-sectionally averaged set of basic equations there is an unresolved 
conflict (Gidaspow 1974) over the question of whether they represent a "well-posed 
problem" and could, or should not, lead to some of the characteristics being imaginary. 
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Associated with the problem of complex characteristics is the fact that instabilities 
frequently occur during the numerical evaluation of the equations. These numerical 
problems have been shown (Bour6 1975) to be related to the modeling of the interaction 
between the phases. Two approaches are used to attempt to remedy this problem. In one an 
additional, somewhat hypothetical, viscosity term is introduced with a view to damping out 
high frequency disturbances in the numerical solution. The second, more recent approach is 
a series of attempts at developing a theoretical model which more accurately represents the 
interactions between the phases. These studies are primarily concerned with gas-liquid 
flows, some directed at bubbly flow and some at stratified flow. 

In one study of particular interest, Drew et al. (1979) consider theoretically the virtual 
mass of a bubble in an accelerating two-phase flow, including the presence of other bubbles, 
and find that the virtual mass forcef~m can be expressed as 

in which Q,. is the virtual mass per unit bubble volume (usually taken as ~]2 for a 
nondeformable single spherical bubble), and the virtual mass acceleration a~,. is given by 

d~,m 
6u~ ~uc ~ud 6uc 

/~t ~t + u~ ~ - u. T~x 

+ (X - 2)(ua - uc)~x + (1 - ~,)(ud - uc) 6x]" [2] 

The physical significance of the virtual mass is that it represents the sum of the actual mass 
of a discrete particle plus an added mass to make some allowance for the additional work 
done in accelerating fluid adjacent to the particle, as well as the particle itself. 

In [2] u~ and uc are the velocities of the discrete and continuous phases, respectively, at 
position x and time t. 

The parameters Cvm and X are both likely to be functions of the volume fraction,  of the 
discrete phase. For steady flow, C~,~ is taken as ']2 for a sphere, hut it will take different values 
for other shapes. The proximity of other discrete elements will affect C~m, and may increase it 
(Mori et aL 1975) but little is known quantitatively about this. Similarly, the term ~, requires 
further study. It is an arbitrary parameter introduced (Drew et al. 1979) in the development 
of [2] and must be found by experiment. However, Drew et al do demonstrate that it has 
limiting values of 2 and 0 when the void fraction a is zero and t, respectively. 

Using this formulation, i.e. [2], Lahey et al. (1980) found that the inclusion of added 
mass had very little effect on the accuracy of solution for a steady air-water flow, but that 
the numerical stability and efficiency (i.e. computer run time) was improved considerably. 
Consequently, they advocated it ought to be included in models of transient flows. 

Hancox et al. (1980) also used [2] for a study of a blowdown situation. With C~,~ -- 0.5 
and ~, - 0.5 and 1 they encountered imaginary interracial propagation velocities in stratified 
flow, before choked flow was established. By defining "mixture" properties of velocity and 
density they were able to force the basic equations into a hyperbolic set, though they 
comment that for mixed flows it is not clear whether the virtual mass effects were included in 
a self-consistent manner. This doubt arises because of the space-time averaging procedures 
used to yield a one-dimensional model, although it is recognized that distribution effects 
must be incorporated in the conservation equations. However, when doing this they believe 
that although hyperbolic equations are not essential, they .are desirable because they have 
well-understood mathematical properties and well-established numerical solution proce- 
dures. 
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The objective of the present study is to investigate how the inclusion of virtual mass 
effects can influence the development of a "separated" flow model to be used for the 
transient flow of two-component mixtures in pipes. Inertial coupling between the compo- 
nents, or phases, will be included by means of a virtual mass force appearing in the 
momentum equations. The system is considered to be in thermal equilibrium, hence 
attention is restricted to flows such as low void fraction air/water mixtures or solid/liquid 
slurries. 

C O N S E R V A T I O N  OF M A S S  A N D  OF L I N E A R  M O M E N T U M  

The generalized differential equations of conservation of mass and of linear momentum 
for one-dimensional unsteady two component flows may be expressed in terms of properties 
averaged over the flow cross section of area A. The conservation of mass of the discrete phase 
is given by 

-~ (a pdA) + ~ (a pdudA) ~ 0 [3] 

and for the continuous phase by 

[4] 

In these forms, it is further assumed that no mass transfer occurs between the phases, which 
have densities Pd and Pc for the discrete and continuous components and a volume fraction a 
defined as the volume of the discrete phase as a proportion of the whole. 

The linear momentum equations may be defined in a similar fashion for the two 
components, i.e. 

In this formulation fad and f ~  represent weight components per unit volume of the 
constituents occupying the control volume. The terms foal andft~ represent the drag force on 
the discrete elements and the reaction on the continuous phase, respectively, and wall friction 
f,, is assumed to apply to the continuous phase. The first term, 5p/~x is the previous gradient 
in the axial direction. 

The virtual mass effect due to the influence of the discrete elements on the kinematic 
behaviour of the continuous phase is incorporated after the fashion of Drew et aL (1979): 

f~.d -p:C.. ao, [7] 

in which a~, is given by [2]. The reaction on the continuous phase due to the virtual mass 
effect is denoted by f~,~ in [6]. For the present study, it is assumed that this will be equal in 
magnitude but opposite in direction to f~,d. 

Other assumptions concerning the flow are that the pressure is uniform throughout the 
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cross section and the two phases are in thermal equilibrium with no heat transfer occurring 
across the pipe walls. 

Evaluation o f  Propagation Velocities 

Equations [3] to [6] may be expanded and rearranged in a matrix format: 

'a, aa 0 0 

b3 b, 0 0 

0 0 d, 1 /a  

O O d ,  -~ 
| - - O l .  

I Udl [a2 a4 l 0 

,Uo,  ]bob2 1 0 
' '-F 0 U d d  I Ud/Ot  

I'1' ol t [ 0 1 ucd2 - uc 
L 1 - a  

[!} 
Lc~J~ 

[8] 

in which 

al - Pa + Pc C~",; 

a3 - - Pc Co",; 

bl - Pc + Pc C,,",; 1 - a  

b3 - -  Pc C~",; 
1 - o r  

a 2 = p d U d  "k" Pc Cv", [Ud + (~k - -  2 ) ( U  d - -  Uc) ] 

a4 = Pc C~,,, [(1 - h ) ( u d  --  u¢) --  ud] 

Ot 
b2 =pcuc + ~ _ a p c  Co,, [ua - (1 - h)(ud - uc)] 

- -  Ol 
b4 = Pc Co.• [(h - 2)(Ud -- uc) + Ud] 

1 - - a  

1 dA 1 1 dA I 
d , - - ~ - ~ p  + Kd, d2 A dp + K¢. 

The d,, d2 terms allow for the variation of pipe cross-sectional area with pressure 
( 1 / A  • d A / d p )  and the compressibility of the discrete and continuous components, Ka and 
Kc, respectively. 

Of the additional force terms incorporated only the virtual mass element is a function of 
derivatives, while the other parameters such as gravitational effects and viscous drag appear 
only in the right hand column vector of [8] asfa andfo. The eigenvalues v, that is, propagation 
velocities, associated with [8] can be determined by evaluating the characteristic deter- 
minant: 

l a2-va t  a4 - va3 1 

b4 vb3 b2 - vbl 1 

1 0 dl (Ud --  V) 

0 1 d2(u~ - v) 

011 0 

(u~ - ,,)/,~ 

- ( u <  - 0 / ( 1  - a )  

0. [91 

With the following definitions 

Y d  I Ud - -  p ,  Y c  ~ Uc - -  P, 

d~ d2 
K = - - + - - .  

1 - -O/  Ot 

[lO] 

[111 
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Equation [9], upon expansion and substitution of [10] and [11] becomes 

YaYc Kp .pc  - C . , . - -  - (ua - uc) C~,.()~ - I) 
Yc 

I lC. (±1 
+ YaYcPc ~ \c=/ \pc I - u] .Yca 

+ Yc + _ _  

Ya ( l - a )  2 yd(1----~t) ~ 

[12] 

-F(u). 

In its present form, [12] cannot be solved analytically. However, by restricting its 
application to certain categories of flow, simplifications are achieved which can lead to 
solutions for the characteristic roots. These simplifications include omission of the virtual 
mass force and low Mach number approximation. 

Omission o f  virtual mass  force  

With C,, - 0, all virtual mass effects are negated and [ 15] reduces to 

2 2 - - + y ~  =0 .  [13] - K y a y c  PdPc + Y~P~ Pc 
Ol 1 - -  Ol 

For subsonic flow, this relation has been shown by Lyczkowski et al. (1975) to possess two 
roots which are complex conjugates and two real roots. When the phase velocities are equal, 
or for single phase flow, the four roots become real. As mentioned in the introduction, it has 
been shown that the inclusion of virtual mass terms renders the system hyperbolic. 

Low Mach number  approximat ion 

If one assumes that the component velocities are much lower than the acoustic velocities, 
then the convective acceleration terms in [8] can be considered negligible when compared to 
the time derivatives. Applying this concept to [ 12] one finds 

Ya - Yc l u [14] 

- u 4 K  PdPc+PdPcCom 1 --¢t PdJJ [a 1 ~(I  - a )  i - 0 .  [15] 

The four roots of [ 15] are all real. Two of them are zero, giving vertical path lines on the x - t  

plane, along which propagate the interfacial waves. The remaining two, relating to 
propagation of acoustic waves, are given by 

0 - - : t :  

[, P~+ Pc + PcCv,. 
c~ 1--tx a ( 1 - - a )  2 

, 1 , _ :  (o p.pc l+C. .  
I 
I/2 

[16] 

-- ± Cvm, 
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where c,m denotes the wave propagation speed including the virtual mass effects. Elimination 
of the virtual mass terms in [ 16] results in the so-called stratified wave speed relation (e.g. 
Wallis 1969), i.e. 

pc + O -  a)p  + + A-@pJJ " 
[171 

The term ape + (1 - a ) p  d has been called a pseudo density. By contrast the homogeneous 
wave speed cm (obtained by initially assuming that both components have the same velocity) 
is given by 

{ Io l o 
c., = [o p. + ( l  - o , ) .c ]  + + A d p J  " [18] 

Wallis (1969) has suggested that [ 18] should be applicable for a fine dispersion of particles 
in a liquid, whereas [17] should apply when true stratified flow exists between two 
components with no interracial drag forces present. 

PARAMETRIC STUDIES OF [12] 

As previously indicated [ 12] cannot be solved analytically, but it is instructive to examine 
the influence of certain parameters, such as Co~ and h for a typical system using realistic 
pipeline data. For example, in the following discussion of air-water flows in pipes of 
diameter D and wall thickness e it is assumed that: 

uc = 3 m/s, 

Pc = 1000 kg/m 3, 

Kc = 2.05 GPa, 

D/e = 20, 

ud - 2 m/s, 

Ps - 4.2949 kg/m 3, 

Ka - 0.355 MPa, 

E - 207 GPa. 

Here E denotes the elastic modulus of the pipe wall material. 
It will be shown that four real roots will be obtained for many situations. Two of these 

will always be real and of a similar magnitude, and correspond to the propagation speed of 
the main transient pressure (i.e. water hammer) waves. These will be termed "primary 
roots." The other two roots, which are close to the individual phase speeds, will be termed 
"secondary" or "minor" roots for the purposes of discussion. 

The influence of the virtual mass coeJficient 
Setting [ 12]  - F (u) and evaluating this for various values of u over a range of virtual 

mass coefficients between 0 and 0.5 yields a set of curves as shown in figure 1. For this 
particular example k - 1 and a void fraction of 0.1 was used. It is apparent that for C~m - 0 
there are two primary roots of [12] in the region of ±290 m/s. As C~, is increased the 
primary roots take on much lower values, eventually reaching ±68 m/s approximately (they 
are not quite equal) when C~m - 0.5. 

An alternative way of illustrating the influence of C~, is figure 2 which is a direct solution 
of [ 16] for the same conditions. The results from the two equations are very dose. The upper 
curve on figure 2 corresponds both to [ 16] with C~, - 0 and to [ 17] for stratified flow. The 
bottom curve is from [ 18] to which solutions of [ 12] and [ 16] become asymtotic as C~m > 0.5. 
The experimental data superimposed on figure 2 is from Martin & Padmanabhan (1979) for 
transient propagation speeds in air-water slug flow. 
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Figure 1. Effect of varying the added mass coefficient on F(p), i.e. [12]. 
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Figure 2. Speed of sound vs void fraction in air-water mixtures with different added mass 
coefficients. Experimental dataare from Martin and Padmanabhan (1979). 
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Figure 3. Effect of the added mass coefficient on the minor roots of [12] .  

In figure 1 all of the curves appear to fall towards zero as v tends to zero. Closer 
examination, as shown in figure 3 shows that if the virtual mass coefficient exceeds 
approximately 0.03, as it would do in practical situations, there will be two real roots to [ 12]. 
Another interesting feature of this set of curves is that they all intersect at v - 3 m/s  which 
was the assumed speed of the continuous phase. This feature is also true at different phase 
velocities and is irrespective of which phase has the greater speed. 

The influence of the parameter )~ 
Drew et al. (1979) introduce ~ into their development of a relationship for virtual mass 

acceleration, for which the acceleration is defined as [2]. The value of X is expected to be a 
function of void fract ion,  at least, and from a consideration of limiting cases deduce that in 
the low and high void regimes: 

lim X(oO - 2, [191 
a--.O 

lim X(a) - O. [201 a---- ! 

) , : 2 / 0  

/ 
- 5 -  

o, : o.1 c.= 0.5 

u, = 3rn/s U4 = 2 m / s  
I -,lOx. 

.SxlO~ 

.x~ 9 (m/s) 

80 

Figure 4. Effect of),  on the primary roots of [15] for a void fraction o f  0.1.  
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Figure 5. Effect of), on the minor roots of [12] for a void fraction of 0.05. 

Intermediate values of ~ (a) are not clear. However, using realistic pipeline data as in the 
previous section the effect on the roots of [ 12] has been examined. 

Figure 4 is typical of several that illustrate that the influence of X on the numerical value 
of the primary roots is minimal. Only the two extreme values of 0 and 2 are plotted as the 
curves are so close. Other data for intermediate values of X fall between these extremes. The 
effect on the secondary roots is more dramatic as shown in figure 5. Similar diagrams can be 
prepared for other void fractions. An extensive collection of this data has been combined in 
figures 6 and 7 which are graphs of the loci of the secondary roots of [ 12]. Two figures are 
used to display this data in the interests of clarity. 

From figure 6 it is noted that for void fractions up to 0.2 there are two real secondary 
roots to [ 12] provided X is less than about 1.6. As o~ decreases towards zero the limiting value 
of k for two real secondary roots to exist moves towards 2, the value deduced by Drew et al. 
(1979) in [19]. Irrespective of what value of void fraction occurs; for k - 1, one of the roots is 
always the velocity of the continuous phase, i.e. v/uc - 1. The other root is slightly greater 
than the velocity of the discrete phase (0.667 in figure 6), but approaching it as the void 
fraction falls. At higher void fractions, above approximately 0.25 in this case, two real 
secondary roots occur for all values of k. Again, for X - 1, one root is the velocity of the 
continuous phase, whereas the other root is a slowly varying function of X. 

In general therefore, of the four possible real roots (assuming k ~< 1.6) the one most 
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Figure 6. Loci of the minor roots of [ 12] vs ), for void fractions in the range 0.001-0.2. 
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Figure 7. Loci of the minor roots of  [ ! 2] vs  X for void fractions in the range 0 . 2 - 0 . 5 .  

significantly influenced is that corresponding to the speed of the continuous phase when ~, = 
1. 

A N  A P P L I C A T I O N  T O  S O L I D - L I Q U I D  M I X T U R E S  

Consider a mixture of glass beads in water with the following properties: 

Pd = 2475 kg/m 3, 

Pc = 1000 kg/m 3, 

C~,= = 0.40, 

Ka = 39.62 GPa ,  

Kc - 2.05 GPa ,  

c o = 1.432 km/s. 

In the above Co - x/-~ffpc, the acoustic velocity in the continuous medium. Dimensionless 
plots of c~,./Co, c,/co and c,./Co as functions of c~ are shown in figure 8. The acoustic speed 
which includes virtual mass effects falls between the stratified speed and the homogeneous 
speed. Figure 9 shows comparisons with experimental data for a similar mixture (Thorley 
1978). 

Comparing figure 2 with figures 8 and 9 it is noted that the deviation between 
homogeneous and separated flow model predictions of wave propagation speeds is far greater 
with air-water mixtures than with glass-bead and water mixtures. For the solid-liquid 
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Figure 8. Theoretical wave speeds vs solids concentration for a glass bead/water mixture. 
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Figure 9. Comparison of experimental and theoretical wave speeds for a glass bead/water mixture. 

mixtures the influence of varying the virtual mass coefficient is similar to that previously 
demonstrated for the air-water mixtures. With the virtual mass coefficient set equal to zero 
the solution of [ 16] is identical to that for [ 17]. Increasing C~,, in steps towards 0.5 brings the 
solution of [ 16] towards that for [ 18], approaching it asymptotically as Co,. is increased, hut 
never crossing it. 

DISCUSSION AND CONCLUSIONS 

Assuming a separated flow model with thermal equilibrium, the four equation system 
(two conservation of mass and two conservation of momentum) can be formulated to include 
virtual mass forces due to the influence of the discrete phase on the kinematic behaviour of 
the continuous phase. In effect, this produces a coupling between the two momentum 
equations in terms of the derivatives of ud and u~---see [8]. The eigenvalues, i.e. propagation 
velocities, associated with this system of equations cannot be solved analytically. However, in 
contrast to the recent conclusions of Rath (1981), it is apparant that four real roots can exist, 
two primary roots and two secondary roots. 

Using an estimated, but physically realistic virtual mass coefficient the two primary 
roots are essentially the same as the propagation speeds predicted by the well-known 
homogeneous model [18]. Two real secondary roots have also been shown to exist provided 
that both the virtual mass coefficient C~" and the parameter X are assigned values that can be 
justified on physical grounds. This qualification is not very restrictive as real roots can still be 
predicted using extreme values of C~" and ~,. Numerically, the two secondary roots are close 
to the velocities of the two separate phases and for ~ - 1, one root is the actual velocity of the 
continuous phase. 

It therefore appears that the addition of virtual mass provides a more accurate and 
generalised expression for the accoustic propagation velocity, one which may be applicable to 
a variety of heterogeneous flows. Uncertainties in the model include the precise form of the 
virtual mass term, [7] and the arbitrary omission of space-time distribution effects (Hancox 
et al. 1980). Wallis (1978) has remarked that although inertial coupling exists in most 
two-phase flows it is unlikely that a universal expression is valid for all flow regimes. In 
addition, he suggests that the coupling is significant only when the velocities are changing 
rapidly. 
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